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Abstract—The most important input signals for calculating 
the life consumption of fracture critical parts of turbine 
engines were analyzed for their information content. This 
information content determines the data volume to be 
transmitted and stored, if instead of calculating life usage in 
real-time in the on-board monitoring system this calculation 
is postponed to later processing in a ground-based support 
system. Signals from various sources are shown and 
processes contributing to an increase in information-
theoretic entropy are identified. Some methods to avoid 
unnecessary components of the composition of signals are 
proposed. 

It is shown that a considerable part of the entropy 
determining the storage requirements can be either avoided 
or removed, if only that part of the information is retained 
that has a deterministic influence on the results of a variety 
of algorithms for life usage monitoring. If proper rate 
conversion, quantization, low pass filtering and noise 
suppression is applied, highly efficient methods for data 
compression based on delta coding, statistical adaptive 
prediction models and arithmetic coders can be used to 
reduce the data volume to astonishingly low figures. On-
board storage of 100 hours of engine operation and 
archiving the complete running history in the ground 
support system could remove many of the shortcomings of 
existing LUM systems. 

 

 TABLE OF CONTENTS 

1. INTRODUCTION 
2. EXAMPLE OF A LIFE USAGE MONITORING RESULT 

 3. EXAMPLES OF MEASURED SIGNALS 
 4. DATA RECORDING 
 5. CONCLUSIONS 
 6. REFERENCES 

 
1. INTRODUCTION 

Principles of LUM 

Life usage monitoring (LUM) of fracture critical parts is 
considered to have a great potential to save costs without 
compromising flight safety. The general ideas of LUM are 
now well established and have been documented in 
comprehensive reports [1, 2]. Although some of the existing 
systems have proven their cost effectiveness and are well 
accepted by their users, the need for continued adaptations 
of LUM algorithms to the experience gained during fleet 
operation and to changes of engine hardware requires an 
unexpectedly high amount of system maintenance. 

Current systems for monitoring the life consumption of the 
fracture critical engine parts rely on increasingly complex 
algorithms to determine the transient thermal and 
mechanical behavior of rotor structures as a function of the 
engine and aircraft data that are acquired in real time.  

Those algorithms have regularly to be adapted to changes of 
the engine, e.g. introduction of redesigned components or to 
in service experience indicating that rotor areas not covered 
by the existing algorithms might become life-limiting [3]. If 
those algorithms are implemented in an onboard engine 
monitoring system the associated update process of the 
monitoring software in an aircraft fleet needs careful 
logistic planning and may cause considerable costs 
sometimes exceeding the savings of individual monitoring 
of the parts. 

On-board Monitoring or Recording 

Life usage monitoring does not necessarily require the 
presence of a fully featured on-board monitoring system, 
e.g. the OLMOS system [4] for the Tornado fleet of the 
German Air Force (GAF), but can also be performed based 
on recorded engine and aircraft data.  

Whereas the GAF has decided to perform LUM for their 
whole Tornado fleet on-board, the Italian Air Force (IAF) 
pursues a different approach. All Italian Tornado aircraft are 



equipped with a tape based maintenance recorder. The data 
recorded by this device are downloaded after each flight, 
i.e. the tape cassette is exchanged and the data are 
transferred to a ground station computer that is part of the 
MaRe (Maintenance Recording) system. This data 
download has now been performed since several years, even 
though only a preliminary version of the ground station was 
available. The data were read from the tape and stored in 
one large database. The engine related data were transferred 
to the engine manufacturer and are stored for later 
processing. The current size of this database is several 
10000 flights. 

All aircraft in the Italian Tornado fleet are equipped with 
the MaRe system. The final target is to achieve individual 
monitoring of every single engine. Whereas the German and 
Italian air forces have their systems configured for 
monitoring individual engines, including a tracking of 
single life limited components, the UK Royal Air Force has 
a few Tornado aircraft equipped with a tape recorder for 
engine data (EUMS). The applied sampling technique tries 
to estimate the life usage of the RB199 engines using 
statistical reasoning based on the correlations between the 
life usage calculated for the sample data and the (unknown) 
usage seen by the not monitored engines. The high degree 
of uncertainty in this approach requires large safety 
margins. 

Past experience indicates that only a fleet-wide fit of LUM 
is able to remove the uncertainty introduced by statistical 
predictions to the level required to exploit the full life 
potential of fracture critical parts. To improve the statistical 
basis a retrofit of modernized flight data recorders is 
currently planned to replace the obsolete EUMS recorders 
in the UK. 

Other examples of installed data recording systems are the 
monitoring systems for the French Rafale [5] and recording 
systems used by the US Navy [6]. 

Advantages of Data Recording 

As already mentioned, the algorithms used to compute the 
life usage of rotating components are highly dependent on 
the engine configuration. To avoid logistic limitations, the 
on-board LUM software must therefore be able to cope with 
any existing engine standard and combination of 
components. If new variants of components are introduced, 
this requires an adaptation of the on-board software and the 
corresponding data handling software in the ground support 
system. To avoid the cost of frequent fleet-wide retrofits of 
the monitoring software, long delays between the 
availability of updated algorithms and their introduction 
into the on-board software have to be accepted. 

This limitation is not present, if the LUM calculation is 
performed for recorded data. With proper configuration 
control an update of algorithms can be performed within 

very short times thus reducing the logistic complications 
during the introduction of improved components into the 
fleet. 

The greatest advantage of having recorded data is the ability 
to reassess the running history of those parts, for which it 
turns out after years of usage that the assumptions made on 
life limiting processes were inaccurate. This may lead to the 
appearance of cracks at areas not covered by the installed 
LUM algorithms. With a classical monitoring system 
without data storage, assumptions have to be made on the 
correlation between the life consumption at the newly 
detected life limiting area and the calculated life 
consumption at the actually monitored area [7]. In most 
cases this will require conservative assumptions thus 
loosing a significant portion of the useable life. The 
availability of a recorded running history would completely 
remove the necessity to determine the unknown life 
consumption by correlations. The stored data can be input 
into an updated or newly developed algorithm, using the 
best available temperature, stress and damage models. With 
highly optimized implementations of the LUM algorithms 
the recalculation of several 1000 flights for all critical parts 
of one engine can be accomplished in less than one hour 
CPU-time on a 1GHz PC. Dependent on the complexity of 
the applied algorithms the computer time for the 
recalculation of the complete running history for one critical 
part could drop to a few minutes. 

The benefits of having access to the full running history are 
so significant, that it seems worthwhile seriously 
considering the option of replacing or at least enhancing 
obsolete on-board LUM systems by a suitably designed data 
recording process. It will be shown, that some of the 
objections thought to be inhibiting the use of recorded data 
for LUM are either not substantial or may be overcome by 
an appropriate design of the data acquisition and recording 
process. 

The main part of this paper will be organized as follows: 
First a typical result of an existing on-board monitoring 
system will be given. Some consequences for the required 
accuracies and timescales are discussed. 

The next paragraph will introduce the types of signals used 
in typical LUM calculations. Some examples are given 
showing the non-perfect behavior of signals. The 
application of low pass filters to counteract noise or 
imperfections of the data acquisition process is demon-
strated. It is shown, that proper preprocessing of the signals 
may dramatically reduce the storage space requirements. 

An outline of the method for conditioning and compressing 
the data is presented, including analysis of signal properties 
(e.g. power spectrum of signal autocorrelation), filter 
selection, optimal quantization, selection of statistical 
predictors, update of a statistical signal model and finally 
arithmetic coding. 



2. EXAMPLE OF A LIFE USAGE 

MONITORING RESULT 
Life usage cannot be measured exactly. The basic idea is the 
dependence of the failure probability of a part on the load 
history of this part. A LUM system tries to calculate the 
load history for some highly loaded areas (critical areas) of 
the part using a mathematical thermal and mechanical 
model. The time-dependent boundary conditions for this 
model have to be calculated from the time-dependent 
measurements of engine and aircraft signals. The most 
important signals are the rotation speeds of the engine 
spools, the engine inlet conditions (e.g. inlet temperature, 
pressure), gas temperatures from the compressors and 
turbines. Typically also flight conditions (speed, altitude), 
the throttle position and the position of actuators and bleed 
valves may be needed for thermodynamic calculations. 

The result of the life usage calculation at a certain critical 
area for one flight is finally cast into a single number, the 
“life consumption”, expressed in units of a reference life 
consumption of a defined design mission. The life 
consumptions of all flights seen by a part are added and 
compared against a predefined limit, corresponding to a 
given accepted failure probability (the “released life”, again 
expressed in units of the life usage of a design reference 
mission). 
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Figure 1: Observed Scatter of LCF Life Usage 

The results of this process, applied to a population of parts 
are shown in Figure 1. The data show an example for a 
compressor disk. These parts were individually monitored 
from their introduction into service. After some years of 
operation the parts have experienced their individual 
histories leading to some sort of distribution “cloud” in the 
usage versus flight time diagram. 

In the past one of the arguments for the necessity of real 
time monitoring in on-board systems was the immediate 
availability of current life consumption figures at the end of 
each single flight. To assess the technical justification of 

this requirement, it is useful to look at a selected part in the 
upper right corner of the cloud. Due to the accumulating 
nature of the damage process, one further year of usage will 
bring the part somewhere between the two question marks 
at the right side of the dark triangle. Without monitoring, 
the upper value would have to be assumed. Even with this 
worst-case assumption, there is no technically justified need 
for an immediate availability of detailed results of a LUM 
calculation. The decision, where the part eventually will be 
located in the diagram, can therefore be easily postponed to 
the end of the year or even to the time, when the worst-case 
extrapolation intersects the horizontal limit line indicating 
the released life. In the example shown, this line lies far 
above the upper boundary of the diagram. 

The consequence for a planned replacement of detailed on-
board monitoring by a ground based LUM calculation is 
rather encouraging: If statistical data on the expected scatter 
bands have been determined [7], than there is no additional 
risk by postponing the actual determination of life usage for 
a few month or even a year. It is therefore possible to 
optimize the download frequency of stored flight data 
without the need for meeting tight time constraints. 

This is further justified by the nature of the underlying 
fatigue processes that result in scatter bands of life potential 
that are at least one order of magnitude larger than the 
difference between life consumption calculated by the most 
sophisticated available algorithms and a correlation with a 
non-specific usage parameter during an engine operating 
period of a few month. 

3. EXAMPLES OF MEASURED SIGNALS 

Total Inlet Temperature T1 

The first example shows the engine total inlet temperature 
for a mission flown with a jet trainer. 
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Figure 2 Total Inlet Temperatures for Trainer Mission 

The inlet temperature determines the “base level” for the 
gas temperature calculation in the compressors and the 
cooling air system. It is influenced by the temperature of the 



ambient atmosphere and by the speed of the aircraft. Rapid 
changes of this signal may occur during hot gas ingestion of 
exhaust plumes or during thrust reverse. The normally 
expected behavior is quite smooth. Looking at the enlarged 
part of Figure 2 reveals the presence of superimposed 
fluctuations with amplitudes of 0.1-0.2K. This fluctuation 
that is probably caused by noise in the measurement system 
will have absolutely no influence on the temperature 
development of disks or even blades, since the time 
constants involved in heat conduction will be at least a few 
seconds for blades and minutes for the rotor structures. 

The appropriate treatment of this signal to remove the 
unwanted noise is to apply a low pass filter. There is a vast 
amount of literature on the topic of filter design. The 
influence of input signal filtering on the results of LUM 
calculations has been investigated in [8]. To determine 
which filter has to be applied to remove noise without 
unacceptable deformation of the underlying deterministic 
signal, a spectral analysis of the signal autocorrelation has 
to be performed. Processes with long-term memory tend to 
produce spectra with continuously decreasing amplitudes, 
known as (1/f)-behavior. White noise creates equal 
amplitudes for all frequencies whereas periodic processes 
can be easily identified by the associated peaks in the 
autocorrelation spectrum. 
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Figure 3 Autocorrelation Spectrum of T1 Signal 

The method how to extract meaningful autocorrelation 
spectra is described in many books on signal processing. 
The spectra shown here were produced with a program from 
[9], which uses averaging of overlapping segments together 
with window functions (Segments of length 512 were used 
together with Hanning windows). 

The spectrum in Figure 3 has two different regions. The low 
frequency part exhibits the characteristic falling tendency of 
processes with long memory, whereas the high frequency 
part has the typical white noise behavior. No periodic 
components are visible. 

A well proven rule for the selection of a de-noising low pass 

filter is to select its cutoff frequency somewhere in the 
transition region before the spectrum becomes horizontal, 
indicating a pure random process. As random data are 
unpredictable, the random component is not accessible to 
any data compression technique and will therefore need 
additional storage space without contributing any useful 
information. 
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Figure 4  Influence of Butterworth Low pass Filter 

Using the filter family discussed in [8], a recursive 4th order 
Butterworth low pass filter with normalized cutoff 
frequency 0.13 was applied to the stored raw T1 signal. 
Figure 4 shows the damping of the white noise part of the 
spectrum, whereas the low frequency part remains 
unaffected. Figure 5 below shows the influence in the time 
domain for the time interval also shown in Figure 2. 
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Figure 5 Order 4 Butterworth Filter Applied to T1 Signal 

To compensate for the phase shift introduced by the filter 
the group delay for the frequency 0 was used for a re-
synchronization of the raw signal and the filtered signal. 
The filtered signal now looks very “predictable”, thus 
enabling a much better compression rate for the data storage 
process. 



Spool Speed Signals Problems Arising from Sampling Rate Conversions 

Rotational spool speeds are either measured by counting the 
number of impulses created by a phonic wheel over a short 
fixed time interval (typically 100 ms) or by directly 
measuring times for a certain number of impulses. 
Dependent on the engine design (2 or 3 spools) and on the 
need for multiplexing counters in the data acquisition 
system the update rate is limited to 2 or 4 Hz with the first 
method, whereas higher sampling rates, as needed by a 
digital engine control unit, are possible with the time 
measurement technique. The Tornado Data Acquisition 
Unit (DAU) provides spool speed signals with 2 Hz. This 
frequency is also used in the LUM algorithms as update rate 
for the thermal transient models. Unless there are erroneous 
pulse counts caused by electronic interference, this sort of 
measurements usually produces very reliable and noise-free 
signals, with decreasing autocorrelation power density up to 
the Nyquist limit. The possible change rates are limited by 
the large mass of the rotors. Any sort of filters will have an 
influence on the signal dynamics. It has been shown in [8] 
that the possible gain in data compressibility is inevitably 
accompanied by a decrease in the accuracy of LUM results 
with filtered spool speeds. It is therefore advisable to avoid 
signal filtering for spool speeds measured with low update 
rates. 

If spool speeds or other engine signals are available with 
higher data rates, as they are required by the engine control 
system to counteract flow instabilities and to avoid speed 
and temperature exceedances, there is often no plausible 
reason to use this high data rate also in the LUM 
calculations. The appropriate method for a reduction of data 
rates is to limit the frequency content of the signal sampled 
at the high rate according to the Nyquist criterion with a 
suitably designed anti-alias filter before using a low 
frequency partial sample. If it is possible to define a 
sampling frequency for the acquisition of data for LUM, a 
frequency compatible with the update rate of the data source 
should be selected. To give an example, it is probably better 
to use a 2.5Hz recording frequency instead of 2Hz, if the 
control system runs with a cycle of 40ms. The rate 
conversion techniques, as they are applied in digital audio 
processing, usually require sophisticated digital filters 
considered to be too complicated or expensive in a flight 
data acquisition or monitoring system.  

Ignoring these requirements by a simplistic approach –just 
record the last available sample, irrespective of phase 
considerations, produces artifacts that render most of the 
acquired information useless. Sometimes data have already 
been recorded without consideration of these constraints, as 
illustrated in the following example from the recorded 
engine data of flight tests of the Eurofighter. Those data 
were passed to our life usage monitoring group to assess the 
accuracy of the results of the on-board engine monitoring 
box. A spectral analysis of the autocorrelation of one of the 
spool speeds gave the following result: 

The most decisive feature for the high sensitivity of LUM 
results to signal modifications of rotational spool speeds is 
their immediate influence on centrifugal stresses that may 
enter the damage calculation with high exponents. It has 
been found nearly impossible [8] to find filters that do not 
have some biased effect on overshoot peaks as shown in the 
following figure: 
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 Figure 7 Autocorrelation Spectrum of Spool Speed 
Figure 6 Overshoot of Spool Speed 

Without going into details, the peaks and increased power 
density level in the normalized frequency range around 0.2 
were identified as mixing harmonics of the incompatible 
sampling rates of recording and data acquisition by the 
control system. To remove the resulting periodic signal 
content, a low pass filter with a normalized cutoff frequency 
near 0.15 was applied to the recorded data. 

On the other hand there exists usually no or only negligible 
noise in counted spool speed signals. The required data 
volumes to store spool speed data shown later in this 
presentation were therefore determined without any filtering 
of the spool speeds. 
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Figure 8 Comparison of Raw and Filtered Spool Speed 

Figure 10 Throttle Position of Trainer Mission 
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It is therefore acceptable to use a very coarse resolution and 
to suppress the recording of small changes. The whole 
useful information in the selective enlargement insert in the 
following figure can be represented by “Throttle Position = 
75% +-1%”, ignoring the details obviously only showing 
the influence of the airframe vibration on the potentiometer 
pick-up. One has to be careful when applying low pass 
filters to this sort of signals, because of their smoothing 
effect on step changes. The detection of transitions in the 
engine operating mode may be complicated with an 
aggressively filtered signal. 

 4. DATA RECORDING 

Figure 9 Difference between Raw and Filtered Signal after 
Re-Synchronization 

 
General Purpose Recorders 

The current trend in the development of aviation recorders 
[10] seems to be aiming either at an ever increasing number 
of parameters or at higher sampling rates, which are needed 
for incident and accident investigations The rapidly 
decreasing cost of memory does not favor attempts to 
reduce the storage requirements, as it has been tried in the 
past [11]. In contrast the application to LUM discussed here 
only needs a few parameters with relatively low sampling 
rates. 

A comparison of the original and filtered signal after 
compensation of the phase shift is shown in the previous 
two figures .The structure of the periodic deviations weakly 
visible in Figure 8 is better illustrated by the difference plot 
of Figure 9. Both pictures are also a good example, that a 
well-designed filter can do a good job in limiting the 
information content to the physical meaningful portion of a 
signal. The filtered signal seems to be perfectly sufficient to 
represent the physical behavior of the rotor, at least in the 
absence of heavy flow disturbances like compressor surge 
or of severe mechanical failures. It might therefore be 
desirable, to store only that amount of information 
corresponding to the properties of the filtered signal. 

The data recording process as it is now applied in most 
aviation data recorders captures a lot of information never 
needed in a reasonably defined life usage algorithm. The 
limitation of the recording process to a few parameters with 
well-known behavior allows using specifically tailored data 
conditioning to each signal type. The removal of those 
signal components not carrying useful information and the 
exploitation of the specific autocorrelation properties of 
each signal would enable the construction of a highly 
efficient recording function for the input data for LUM. 

Signal with Quantization Noise (Throttle Position) 

As a final example a signal is presented, for which the 
accuracy needs for LUM are rather low. The throttle 
position itself usually is not an input parameter for the 
mathematical thermal or mechanical models, but it is 
sometimes needed to identify certain phases of the engine 
run. It helps to detect engine start or shutdown, to identify 
the selection of take-off or combat power or to count idle 
times before the shut down of the engine. 

To give an outline, each signal would have its own 
dedicated processing, consisting of: 



o Rate conversion from the sampling rate of the data 
source with application of anti-alias filters 
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o Sampling with the minimum required rate 
o Removing noise with a low pass filter or discard-

ing low amplitude changes 
o Application of a suitable data compression tech-

nique 
 
The following paragraph will discuss some aspects of data 
compression applied to the input data of LUM. 

Data Compression Applied to Engine and Aircraft Signals 

The field of data compression is one of the biggest in 
information processing science. Virtually every computer 
has some compression utilities stored (try to install any 
operating system without unpacking compressed archives). 
There are hundreds of compression programs and every 
square foot in the field of methods is mined with some 
patents. The majority of programs have been designed for 
text compression, but most of the methods are applicable to 
other data as well. Currently the most popular methods are 
the so-called dictionary coders that look for repeated 
sequences of text in the uncompressed file. They have their 
roots in the classical works of Ziv and Lempel in 1977 and 
1978 [12]. Nearly everybody involved in the handling of 
flight data has probably already used one of the popular 
compression utilities to squeeze a large file with recorded 
data onto a 1.44MB diskette. 

Figure 11 Histogram of T1 Distribution 

The distribution is a consequence of the flight profile shown 
in Figure 2 and may be completely different for another 
mission. 

Delta Coding 

Signals with a high degree of short time autocorrelation are 
candidates for the application of delta coding. 
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A typical result for an ASCII file with 16316 lines of 15 
Integer data per line (converted data for one Tornado flight 
from the Italian MaRe system) looks like this: 

zip –9 –v  flight.zip  recorded.txt 
total bytes 1029232, compressed=147192 -> 86% savings 

 
Even this totally unspecific method is able to pack the data 
for more than 2 hours of engine running time with two 
engines into a surprisingly small file. This simple 
experiment shows, that there obviously a lot of redundancy 
is present in the data that can be removed without any loss 
of information. In conjunction with data conditioning there 
exists a potential for a further reduction of the data volume. 

Figure 12 Histogram of Delta Values for Unfiltered T1 

Although there is the expected peak at delta=0, the 
occurrence of gaps and many discontinuities is a 
consequence of the noise content of this signal. However 
this distribution is much less dependent on specific mission 
profiles than the one previously shown. 

One of the classical methods is coding signal values 
according to their probability of occurrence. The underlying 
idea is to use shorter codes for highly probable signals and 
longer codes for rarely occurring signal values. The best-
known technique implementing this concept is Huffman 
coding [12]. Due to the high variability of military flight 
profiles most signals will not allow an efficient allocation of 
shorter codes to certain signal ranges. This is illustrated by 
the example in the following figure: 

The situation changes if the noise is removed by the low 
pass filter and the reduction of the quantization step to 
0.02K (which is still far below the resolution needed for the 
LUM) is performed. 



It is even possible to consider higher order models. To give 
an example, Order-2 models represent the information: 
“What is the probability distribution of the occurrence of a 
certain delta_3 after a combination (delta_1, delta_2) has 
been encountered?“ In the investigation of engine signals 
only models up to order 2 were found to be optimal. 
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Whereas Huffman codes can only use the fixed values ½, 
¼, 1/8, 1/16, …of the probability, a method to represent 
arbitrary probabilities, known as “Arithmetic Coding”, first 
mentioned in a conference presentation in 1979 [13] is 
available. With arithmetic coding, it is possible to use 
exactly the actual probability to create a reconstructable 
encoding. Arithmetic coding is now used in most of the 
current state-of-the-art data compression methods [14, 12]. 
The required storage space is then given by the sum of the 
negative binary logarithms of the probability decisions over 
all time steps. 

Figure 13 Histogram of delta T1 After Filtering 

The information on the unequal probability distribution of 
occurrences of a change increment “delta” from the 
preceding signal value can now be used to statically assign 
code lengths according to its probability p. The optimal 
code length would be where log2 is the 
logarithm for the basis 2. Because Huffman codes can only 
have an integer number of bits, only probabilities 2 can 
be exactly represented.  
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Figure 15 Histogram of Successor Counts for Delta=0 

An example helps to understand this process. Figure 15 
shows the accumulated counts of delta values that have 
occurred in the time step following a time step with delta=0. 
The physical delta value was 0.02K. The figure can be 
regarded as a cut through the distribution shown in Figure 
14 at deltaT1 (t=t0). For simplicity the distribution at the 
end of the flight is shown. Due the application of the low 
pass filter no other successors than those shown in this 
figure occurred during the whole flight. The actual method 
has to build this distribution by gathering the histogram 
from the data seen before the current time step. Nearly half 
of the successors (45%) had again the value delta=0, 1/5 
had abs(delta)=1 etc. With Huffman coding the 45% value 
would be represented by ½, the 20% and 21% values by ¼, 
the 5% and 6% values by 1/32, 1% by 1/128 etc. Coding a 
successor value of 3 would therefore require 7 bits, 
(ignoring the necessity for additional prefix information to 
guarantee unambiguous decoding).  

Figure 14 Occurrence Counts of Successive Combinations 
of Delta 

The nature of the physical process creating the data and the 
smoothing effect of the low pass filter do not only create a 
statistically predictable distribution of changes “delta” from 
the preceding measurement (Order-0 statistics), but also 
correlations between successive delta values (Order-1 
correlation), as shown in Figure 14. The alignment of the 
contour plot of occurrence counts along the diagonal simply 
represents the fact that a continuation of the signal with the 
current change rate has the highest probability. 

With arithmetic coding a successor 0 uses exactly 
 bits, a successor 1 would require 

 bits, etc. 

152.1)45.0(log2 =−
184.2)22.0(log2 =−



The good predictability of data during stable flight 
conditions and engine operation is a pre-requisite for 
efficient data compression. During transient operation the 
uncertainty of predictions is much higher. As a consequence 
the average required storage space over a whole flight lies 
somewhere between the extremely low values for stable 
operation and the maximum that occurs when no prediction 
is available. For the example just discussed the storage 
space for the whole flight was 2.6 bits per time step. 

In contrast to an intuitive assumption, there is no significant 
difference in the data volume produced by the ferry flight 
and the patrol mission containing a considerably higher 
amount of manual throttle movement. The reason for the 
sustained rate of information flow during the visually near 
constant spool speed phase of the ferry flight is the 
engagement of the automatic thrust control function (“auto-
throttle”) that tries to maintain a constant cruising speed by 
small modulations of the engine thrust. The main need for 
thrust adjustment is caused by atmospheric turbulence, thus 
requiring random-looking changes of the engine thrust 
settings. The recording of the corresponding time history of 
the spool speeds during this phase produces approximately 
2 bits of data for the LP spool and 1 bit per time step for the 
HP spool. Both signals have a resolution of 10 bits. 

Compression rates near the limit posed by information 
theory may be attained only, if each signal has its own 
specific processing. The arithmetic coding process 
internally accumulates information in nearly arbitrary small 
increments that can be much smaller than one bit, dependent 
on how well the statistical signal prediction model and the 
actual signal coincide. 

0

5000

10000

15000

20000

25000

30000

0 2000 4000 6000 8000 10000 12000 14000

A
cc

um
ul

at
ed

 S
iz

e 
of

 O
ut

pu
t [

bi
ts

]

Time Steps

HP Spool Speed Storage

LP Spool Speed

HP Spool Speed

LP
 S

po
ol 

Spe
ed

 S
to

ra
ge

 

Example: Data Rates for Spool Speed Signals. 

To gain some experience the process outlined above has 
been applied to a lot of available recordings of flight data. 
To avoid the expensive tailoring of the coding process to 
each specific signal type, a general purpose implementation 
of statistical modeling plus arithmetic coding (“ARITH-N”), 
taken from the book [12] was used. The main difference 
between an implementation specific for a certain signal type 
and the general purpose program is the replacement of 
dynamically allocated context tables in the general purpose 
program by fixed size tables in the tailored program (as 
proposed in [15]) This replacement removes a lot of 
software complexity and gives static figures for the memory 
allocation in a potential airborne recording system, which is 
also a requirement for a formal software qualification. The 
differences in observed compression rates between both 
implementations have been found to be negligible. 

Figure 17  Data Storage for Patrol Flight 

Although the variability in data accumulation rates shown in 
Figure 17 is greater than in the previous example, the finally 
achieved compression ratios are quite similar. The LP spool 
speed signal requires an average 1.75 bits per time step; the 
HP spool speed signal can be stored in 1.15 bits per time 
step. 
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Estimation of Storage Requirements for Other Signals 

A simple technique has been found to perform a rough 
estimate of the storage requirements for arbitrary signals 
without the need to apply the statistical modeling and 
arithmetic coding. The main steps of the method are: 

o Determine a scaling of the signal that limits the 
maximum delta per time step to the range +-127 

o Apply low-pass filters to cut off noise or periodic 
components, if necessary 

o Write sequence of delta values to a binary file. Due 
to the range limitation one byte per time step will 
be sufficient 

Figure 16 Data Storage for Spool Speed Signals 
(Ferry Flight) 

o Apply the standard “ZIP” compression with the 
“maximum compression” switch to this file Figure 16 and Figure 17 show the development of 

accumulated storage sizes required to store the spool speed 
signals of two realistic Tornado missions (a ferry flight and 
a high speed patrol flight). 

o The expected size with an optimal statistical 
adaptive arithmetic coder will be around 75% of 
the size of the ZIP file. 



Example: Data Rates for the RB199 Engine 

To estimate the storage requirements for retaining the full 
running history of all engines of an aircraft fleet, the input 
data of the engine monitoring part of OLMOS [3] were 
analyzed using available recorded flights from the GAF and 
IAF. The following average data rates (Bytes/hour) per 
engine running time were found, based on the 10bit 
resolution of the Italian MaRe system. 

Airspeed:   732 
Altitude:    344 
Inlet Temperature:  195 
Pilot’s Lever:  1543 
LP Spool Speed:  2633 
HP Spool Speed:  2165 
Turbine Blade Temp.: 2169 

The total amount of data per hour is less than 10kByte. One 
MByte of on-board non-volatile memory could store as 
much as 100 hours of engine operation. A fleet of 300 
aircraft each flying 200 hours per year would produce 1.2 
GByte of recorded compressed engine data. 

Logistic Requirements 

The introduction of a fleet-wide recording process would of 
course require careful housekeeping of data. Housekeeping 
may be simplified if data downloads are synchronized with 
configuration changes of the engine. The recording part of 
the on-board system should not need engine specific data or 
data that are dependent on the engine configuration. 

Expected memory requirements for other engine types are 
expected to be in the order of 10 to 40kByte per flight hour. 
This will allow integrating the recording function into the 
control system or into existing monitoring systems without 
the need for external storage devices. Download frequencies 
could be as low as once every 100 hours of flight time, thus 
providing many workable options for the logistic handling 
of the data. An optimal solution would be to store the full 
running history of all engines in the fleet in a centralized 
database.  
 5. CONCLUSIONS 
It has been shown, that a combination of data conditioning 
and data compression of flight and engine data can be used 
to reduce the required storage space in an on-board system 
to figures that allow storing all data required for individual 
life usage monitoring over operation times of at least several 
months. The logistic burden for data downloads can thus be 
minimized. The downloaded data have to be stored over the 
whole running history of an engine, with appropriate data 
bases to maintain the links between individual fracture 
critical engine components and their associated flight and 
configuration data. The introduction of such a system will 
require considerable investments into hardware, data links 
and data storage. 

The greatest advantage of the proposed approach over 
classical on-board LUM systems is the ability to reassess 
component lives with the best available algorithms instead 
of being forced to make conservative assumptions, when 
new information on life limitations of components 
invalidates the usage figures accumulated with models not 
covering the newly detected damage mechanisms or critical 
areas. 

The proposed method is a candidate to be used in 
monitoring systems for new engine projects. Plans for a 
replacement of obsolete on-board LUM systems for existing 
old engines have to consider the problem how to treat the 
missing running history of those engines. 
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